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Inelastic electron scattering off a quantum dot in the cotunneling regime:
The signature of mesoscopic Stoner instability
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We explore the inelastic electron-scattering cross section off a metallic quantum dot close to the Stoner
instability. We focus on the regime of strong Coulomb blockade in which the scattering cross section is dominated
by the cotunneling processes. For large enough exchange interaction, the quantum dot acquires a finite total spin in
the ground state. In this so-called mesoscopic Stoner instability regime, we find that at low enough temperatures,
the inelastic scattering cross section (including the contribution due to an elastic electron spin flip) for an electron
with an energy close to the chemical potential is different from the case of a magnetic impurity with the same
spin. This difference stems from (i) the presence of low-lying many-body states of a quantum dot and (ii)
the correlations of the tunneling amplitudes. Our results provide a possible explanation for the absence of the
dephasing rate saturation at low temperatures in a recent experiment [N. Teneh, A. Yu. Kuntsevich, V. M. Pudalov,
and M. Reznikov, Phys. Rev. Lett. 109, 226403 (2012)] in which the existence of local spin droplets in disordered
electron liquid has been unraveled.
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I. INTRODUCTION

The electron scattering off a magnetic impurity crucially
affects the properties of electron systems at low temperatures.
The simplest model of a magnetic impurity is a random vector
of fixed length equal to S. Albeit this model ignores the
quantum nature of a spin, it is enough to produce interesting
nontrivial effects, e.g., suppression of the superconducting
transition temperature due to elastic electron spin flip [1].
Typically, this classical approximation is not adequate for the
description of magnetic atoms in real systems since their spin
is not large, S ∼ 1. Importantly, the quantum effects in the
dynamics of a spin make electron scattering off a magnetic
impurity inelastic. For example, the Zeeman splitting makes
the spin-flip scattering energy dependent and suppresses it due
to polarization of the spin along the magnetic field [2]. The
other well-known quantum effect is Kondo renormalization
of the interaction coupling between an electron spin and a
spin of an impurity that leads to nonmonotonic temperature
dependence of resistivity (for a review, see [3]).

The outcome of the interaction between electrons and a
magnetic impurity can be conveniently formulated in terms of
the scattering cross section. For example, the peculiarity of
the Kondo problem can be seen in a nonmonotonic behavior
of the inelastic scattering cross section with energy at zero
temperature [4]. This nonmonotonicity is translated into a
nonmonotonic temperature dependence of the electron dephas-
ing rate due to rare magnetic impurities. The contribution to
the dephasing rate due to inelastic scattering off magnetic
impurities affects the dependence of the weak-localization
correction on temperature and magnetic field [2,5–8].

In real materials with Coulomb interaction, a magnetic
impurity with spin 1/2 can be formed by an electron occupying
a localized level [9]. The magnetic impurity with spin S > 1/2
can be mimicked by a trap with many electrons localized
therein. Recently, such electron droplets with spin S ≈ 2 (per
droplet) have been detected in a two-dimensional (2D) electron
system in Si-MOSFET by thermodynamic measurements of

a sample magnetization [10]. In the presence of a strong
exchange interaction in a 2D disordered electron system at low
temperatures, the spin of an electron droplet can be finite due to
the phenomenon of the mesoscopic Stoner instability [11,12].
The finite spin of an electron droplet yields the Curie-type be-
havior of the spin susceptibility. The temperature dependence
of measured magnetization is consistent with the Curie law
for the spin susceptibility of a single droplet provided their
concentration is inversely proportional to temperature [10].

Motivated by these experiments [10], we consider the effect
of such many-electron puddles with the finite spin on the
transport properties of a 2D electron system. In particular, we
estimate the contribution to the dephasing time due to inelastic
electron scattering off such droplets at low temperatures (T ).
For the sake of simplicity, we model an electron puddle by a
quantum dot described by the so-called universal Hamiltonian
[11] with large charging energy (Ec) and ferromagnetic
exchange interaction (J > 0). We assume that the quantum dot
is weakly tunnel coupled to electrons participating in transport.

Regarding a quantum dot, we focus on the regime of
strong Coulomb blockade, Ec � T , with an integer number
of electrons on the quantum dot. In this regime, the leading
contribution to the electron scattering off the quantum dot
corresponds to the fourth order in the tunneling amplitudes.
This is similar to the cotunneling regime in a standard analysis
of transport through the strongly Coulomb-blockaded quantum
dot. We compare two cases of exchange interaction in the
quantum dot: Heisenberg interaction and Ising interaction.
In the former case, the total spin of the quantum dot in the
ground state can be estimated as S ≈ J/[2(δ − J )], where δ

denotes the mean level spacing for single-particle levels of
the quantum dot [11]. Near the macroscopic Stoner instability,
δ − J � δ,J , the total spin of the quantum dot is large, S � 1.
For the Ising exchange, the total spin in the ground state is zero
for J < δ, i.e., the mesoscopic Stoner instability is absent [11].

In general, the inelastic cross section consists of three terms:
elastic spin-flip, inelastic spin-flip, and inelastic non-spin-flip
contributions. In this paper, we concentrate on the case
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of strong exchange interaction: the quantum dot is close
to the macroscopic Stoner instability, δ − J � δ, and low
temperatures, T � δ − J . We find that for small energy of
the incoming electron, ε � δ:

(i) the elastic spin-flip contribution is the same as for a
magnetic impurity with the spin S ≈ J/[2(δ − J )] � 1, and

(ii) at energies ε � δ − J , the inelastic spin-flip and non-
spin-flip channels become active; they add the contribution
which is 1/S2 ∼ (1 − J/δ)2 smaller than the one due to elastic
spin flip.

The presence of Zeeman splitting which is large in
comparison with temperature suppresses the elastic spin-flip
contribution due to the destruction of the mesoscopic Stoner
phase [13]. Then we find that the inelastic cross section
vanishes for energies |ε| � δ − J . At higher energies δ − J �
|ε| � δ, the inelastic cross section reaches the value which
is of the order of the elastic spin-flip contribution (without
magnetic field) for a magnetic impurity with spin 1/2. In the
case of the Ising exchange interaction, we find that the inelastic
cross section at energies |ε| � δ − J is sensitive to the parity
of the number of electrons on the quantum dot: for odd number
of electrons, there is the elastic spin-flip contribution similar to
a magnetic impurity with spin 1/2. Surprisingly, we find that at
energies δ − J � |ε| � δ, the inelastic cross section becomes
almost insensitive to the parity of the number of electrons.

The paper is organized as follows. In Sec. II, we review
the formalism and present the general expression for the
inelastic cross section at nonzero temperature. Next (Sec. III),
we apply the general formula and derive the expression
for the inelastic scattering cross section for the cotunneling
regime. As the simplest example, we consider the case of
a single-level quantum dot and compare our results to the
ones obtained before (see Sec. III A). We then consider the
inelastic scattering cross section for a many-level quantum dot
near the Stoner instability for Heisenberg (Sec. III B) and Ising
(Sec. III C) exchange interactions. We conclude the paper with
a discussion of the relation of our results to the experimentally
available setups and with the summary of the main results.
Some technical details are given in the Appendix.

II. FORMALISM

We start with the following Hamiltonian:

H = HQD + HR + HT . (1)

Here, the first term HQD describes electrons in a quantum
dot. We consider a metallic quantum dot, i.e., with the large
dimensionless conductance, gTh = ETh/δ � 1, where ETh

denotes the Thouless energy. In this case, the quantum dot
is accurately described by the so-called universal Hamiltonian
[11,14],

HQD =
∑
α,σ

εασ d†
ασ dασ + Ec(n̂ − N0)2 − J S2. (2)

Here, dασ and d†
ασ are the annihilation and creation operators

for electrons with an energy εασ = εα + μBgLBσ/2 on the
quantum dot, where σ = ±1 denotes the spin index, and gL

and μB stand for the electron g factor and the Bohr magneton,
respectively. The second term in the right-hand side of Eq. (2)
accounts for the Coulomb blockade. It involves the particle-

number operator,

n̂ =
∑

σ

n̂σ =
∑

α

n̂α =
∑
α,σ

d†
ασ dασ , (3)

and the external charge N0. The last term in the right-hand side
of Eq. (2) describes the ferromagnetic Heisenberg exchange
interaction (J > 0). It is expressed via the operator of the total
spin on the quantum dot,

S = 1

2

∑
α

sα = 1

2

∑
α,σ,σ ′

d†
ασ σ σσ ′dασ . (4)

We do not consider here the interaction in the Cooper
channel which is responsible for superconducting correlations
in quantum dots [15–17].

Next, the term HR describes electrons in a reservoir. For
the sake of simplicity, we neglect the interaction of electrons
in the reservoir and write the Hamiltonian as

HR =
∑
k,σ

εkσ a
†
kσ akσ . (5)

Here, a†
ασ and aασ are the creation and annihilation operators

for electrons with an energy εkσ = ε(k) + μBg̃LBσ/2 in the
reservoir, where g̃L denotes the g factor in the reservoir. We
note that all energies are counted from the chemical potential.

Finally, the term HT accounts for the coupling between the
quantum dot and the reservoir. We choose it in a standard form
of the tunneling Hamiltonian:

HT =
∑
α,σ,k

tαkd
†
ασ akσ + H.c. (6)

We emphasize that there is no spin flip of electron during the
tunneling event from the quantum dot to the reservoir, or vice
versa. In what follows, we neglect the effect of electrons in
the reservoir on dynamics of the total spin of the quantum dot.
In particular, the diffusion of the spin over the Bloch sphere
induced by the reservoir is neglected (see Refs. [18–21]).

Following Ref. [6], the T matrix for scattering of electrons
from the state |kσ 〉 with energy ε = εk,σ to the state |k′σ ′〉 can
be written in terms of the Green’s functions,

〈k′σ ′|T |kσ 〉 = −[
G(0)

k′σ ′(ε)
]−1GA

k′σ ′;kσ
(ε)

[
G(0)

kσ (ε)
]−1

, (7)

where G(0) and G are the free and full many-body Green’s
functions for electrons in the reservoir, respectively. Using the
Dyson equation for the advanced Green’s function GA, Eq. (7)
can be rewritten as follows:

〈k′σ ′|T |kσ 〉 = − δk′,kδσ ′,σ
[
G(0)

kσ (ε)
]−1

−
∑
αβ

t̄k′βGA
βσ ′;ασ (ε)tαk. (8)

Here, GA
βσ ′;ασ (ε) is the exact advanced Green’s function for

electrons in the quantum dot and the bar sign means complex
conjugation. The corresponding Matsubara Green’s function
GA

βσ ′;ασ (iε) can be found in the imaginary time as follows (see,
e.g., Ref. [22]):

Gασ ;βσ ′ (τ ) = − 1

Z Tr[e−τH d
†
βσ ′e

−(β−τ )Hdασ ], (9)
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where τ > 0, β = 1/T , and Z = Tr e−βH stands for the grand
canonical partition function. The total scattering cross section
for an electron in a state |kσ 〉 is related with the T matrix
as [6]

σσ
tot = 2

vF

Im 〈kσ |T |kσ 〉. (10)

Here, vF is the velocity of electrons in the reservoir at the Fermi
level. In our problem of electron scattering off the quantum
dot, it is more convenient to study the following quantity:

Aσ
tot(ε) =

∑
k

δ(ε − εkσ ) Im 〈kσ |T |kσ 〉, (11)

which is the scattering cross-section averaged with the single-
particle density of states in the reservoir. Using Eq. (8), we can
express the quantity Aσ

tot(ε) as

Aσ
tot(ε) = Im

∑
αβ

Qσ
βα(ε)GA

ασ ;βσ (ε). (12)

Here we introduce the matrix

Qσ
αβ(ε) =

∑
k

δ(ε − εkσ )tαk t̄kβ . (13)

This matrix characterizes the tunnel junction in the following
way. Let us define the matrix ĝαβ = (4π2/δ)

∑
σ Qσ

αβ(ε).
Then, for an electron with the energy ε, the effective number of
open tunneling channels Nch and the effective dimensionless
(in units e2/h) channel conductance gch can be written
as

Nch = (tr ĝ)2

tr ĝ2
, gch = tr ĝ2

tr ĝ
. (14)

We assume that the total conductance of the tunneling junction
is small, gT = gchNch = tr ĝ � 1.

We stress that the T matrix obtained in accordance with
Eq. (12) is averaged over the equilibrium density matrix of
the quantum dot and reservoir. In particular, this averaging
involves summation over initial states of the quantum dot
with the Gibbs weight. Hence, a standard expression for
the elastic scattering σel ∝ |〈k′σ |T |kσ 〉|2, where εkσ = εk′σ ,
is inapplicable for our definition of the T matrix. In what
follows, we shall extract the inelastic part of the cross section
directly from the final expression for the total cross section
(see Sec. III B).

III. THE SCATTERING CROSS SECTION IN
THE COTUNNELING REGIME

To the lowest order in Qσ
αβ(ε), the scattering cross section is

determined by the Green’s function of electrons on an isolated
quantum dot, i.e., the Green’s function corresponding to the
Hamiltonian HQD. Then, if quantities Qσ

αβ(ε) are real, the
scattering cross section is determined by the tunneling density
of states for the isolated quantum dot. In the case of Coulomb
valley, this implies an exponentially small scattering cross
section at low energies, |ε| < Ec.

To calculate the scattering cross section to the fourth order
in the tunneling amplitudes, let us introduce the basis of the
exact many-body eigenstates |i〉 for the Hamiltonian (2) of
the isolated quantum dot: HQD|i〉 = Ei |i〉. Then, computing
the Green’s function of electrons on the quantum dot to the
second order in tunneling (see the Appendix), we find the
following result for the total scattering cross section:

Aσ
tot(ε) =π [1 + e−βε]

∑
αβγ η

∑
i,f,σ ′

pi

∫
dε′ Qσ

βα(ε)Qσ ′
γ η(ε′)

1 + e−βε′ 〈i|d†
γ σ ′

1

ε′ − Ei + HQD
dασ + dασ

1

ε + Ei − HQD
d
†
γ σ ′ |f 〉

× 〈f |d†
βσ

1

ε′ − Ei + HQD
dησ ′ + dησ ′

1

ε + Ei − HQD
d
†
βσ |i〉δ(ε + Ei − Ef − ε′). (15)

Here, pi = exp(−βEi)/Z, with Z = ∑
i exp(−βEi), is the

Gibbs probability for the initial states of the quantum dot.
We mention that the result (15) can also be obtained within
the generalized Fermi golden rule approach for the T matrix
(see Supplemental Material [23]). As discussed above, we will
be interested in the inelastic scattering only, which means that
we will always be considering different initial and final states
of the quantum dot, i 
= f . In what follows, we neglect the
possible dependence of Qσ

βα on spin index σ .

A. Single-level quantum dot

To illustrate the general expression (15) for the scattering
cross section, we consider a simple example of a single-
level quantum dot. In this case, there are four many-body
states: the state without electrons, |0〉, two states with single
electron, | ↑〉 and | ↓〉, and the state with two electrons with
opposite spins, | ↑↓〉. We note that although the universal
Hamiltonian (2) is not justified for a single-level quantum
dot, the general expression (15) written in terms of exact

many-body eigenstates is correct. Then, we find, from Eq. (15),

Aσ
tot(ε) =πQ2(ε)

[
p0 + pσ

(ε + E0 − Eσ )2
+ pσ̄ + p↑↓

(ε + Eσ̄ − E↑↓)2

]

+ πQ(ε)Q(ε + Eσ − Eσ̄ )
1 + e−βε

1 + e−β(ε+Eσ −Eσ̄ )

× pσ

[
1

Eσ̄ − E0 − ε
+ 1

ε + Eσ − E↑↓

]2

. (16)

Here, σ =↑ , ↓ and σ̄ =↓ , ↑, respectively. The first term in
the right-hand side of Eq. (16) describes the elastic spin flip
of the electron with energy ε and spin projection σ after the
scattering off the single-level quantum dot. The second term
corresponds to the scattering with spin flip. In the absence
of magnetic field, the two states with a single electron have
the same energy, E↑ = E↓, and the result (16) coincides with
the result of Ref. [24] for the full transmission probability.
In the presence of magnetic field, spin-up and spin-down
states are not equivalent, E↑ 
= E↓, and the spin-flip scattering
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becomes inelastic. In the absence of interaction, the energy of
the state with two electrons is expressed via the energies of
the states with one and zero electrons, E↑↓ = E↑ + E↓ − E0.
Then, the spin-flip term in the scattering cross section (16)
vanishes. The elastic contribution becomes independent of
temperature. In agreement with Ref. [24], the scattering of
electrons off the single-level quantum dot becomes fully
coherent.

For E0,E↑↓ → ∞, the single-level quantum dot can be
singly occupied only, i.e., the quantum dot behaves as the spin
1/2. In this case, the spin-flip inelastic part of Eq. (16) reduces
to the following expression:

Aσ
inel,sf(ε) = πν2J 2

s {p̄↓[1 − nF (ε + ωσ )] + p̄↑nF (ε + ωσ )}.
(17)

Here, ωσ = Eσ − Eσ̄ , nF (ε) = 1/[1 + exp(βε)] stands for the
Fermi-Dirac distribution function, and p̄σ = nF (ωσ ) is the
probability of the state with spin projection σ . Neglecting
dependence of the tunneling amplitudes in Q on the energy,
we can write the effective exchange coupling between the
spin of electrons in the reservoir and the spin of electrons on
the quantum dot as Js = ν−1Q[1/E0 + 1/E↑↓], where ν is
the average density of states per spin projection at the Fermi
level for electrons in the reservoir. If we assume that there
are many such quantum dots (spin-1/2 impurities) with the
concentration ns and define the spin-flip rate for an electron in
the reservoir as (2ns/ν)Aσ

inel,sf(ε), we reproduce the result of
Ref. [25].

B. Many-level quantum dot near Stoner instability

Now we consider the many-level quantum dot described
by the universal Hamiltonian (2). We remind the reader that
the charging energy Ec is large, Ec � T ,ε,δ,J , and the
external charge N0 has an integer value. Then, the energy
of intermediate states in the right-hand side of Eq. (15)
is equal to the charging energy, HQD − Ei = Ec. Dropping
the elastic contribution, i.e., the term with |i〉 = |f 〉, from
Eq. (15), and using the commutation relation [d†

ασ ,dβσ ′ ] =
δαβδσσ ′ − 2dβσ ′d†

ασ , we rewrite the inelastic contribution to
the scattering cross section as

Aσ
inel(ε) =4π

E2
c

∑
α,γ

∑
f 
=i,σ ′

Qγα(ε)Qαγ (ε + Ei − Ef )

× pi[1 + e−βε]

1 + e−β(ε+Ei−Ef ) 〈i|d
†
ασ ′dασ |f 〉〈f |d†

γ σ dγσ ′ |i〉

+ 4π

E2
c

∑
α 
=γ

∑
f 
=i,σ ′

Qαα(ε)Qγγ (ε + Ei − Ef )

× pi[1 + e−βε]

1 + e−β(ε+Ei−Ef ) 〈i|d
†
γ σ ′dασ |f 〉〈f |d†

ασ dγσ ′ |i〉.
(18)

Here we take into account that the initial and final states of the
quantum dot have the same number of electrons.

Equation (18) constitutes the main result of our paper. We
note that it can be applied to computation of the inelastic
cross section for an arbitrary Hamiltonian which describes a
quantum dot, provided this Hamiltonian conserves the total
number of electrons N and provided the energies of the many-

body exact states with N and N ± 1 are different by a large
value of charging energy. For the universal Hamiltonian (2),
the matrix elements of single-particle operators in Eq. (18) can
be computed exactly by means of the Wei-Norman-Kolokolov
method [26,27], recently employed for exact evaluation of
the spin susceptibility and tunneling density of states [13,28].
Since in this work we are interested in low temperatures, T �
δ, and in low energies of an incoming electron, |ε| � δ, we
can use the straightforward approach, with Clebsch-Gordan
coefficients used for the description of conductance [29,30]
and shot noise [31] through a quantum dot with Heisenberg
exchange at low temperatures.

In general, the tunneling amplitudes tαk are random quanti-
ties due to the random behavior of electron wave functions
on a quantum dot. In what follows, we are interested in
the case when energies of an electron before (ε) and after
(ε′ = ε + Ei − Ef ) scattering are small in comparison with
the Fermi energy of electrons in the reservoir. Thus we
can neglect the energy dependence in the quantities Qαγ .
For a metallic quantum dot, gTh � 1, the averaging of
the tunneling amplitudes over disorder realizations can be
performed independently of the single-particle energy levels
εα . We use the following relations [32]:

Qαγ Qγα =
{
Q2, α 
= γ

(2/β)Q2, α = γ,
(19)

and

QααQγγ = Q2, α 
= γ, (20)

where the parameter β = 1 and 2 for the orthogonal class AI
and the unitary class A, respectively. Then, after the averaging
of Eq. (18) over disorder, we obtain

Aσ
inel(ε) =4πQ2

E2
c

∑
f 
=i

pi[1 + e−βε]

1 + e−β(ε+Ei−Ef )

{
|〈i|S−σ |f 〉|2

+
(

2

β
− 1

) ∑
α,σ ′

|〈i|d†
ασ ′dασ |f 〉|2

+
∑

α 
=γ,σ ′
|〈i|d†

γ σ ′dασ |f 〉|2
}
, (21)

where S−σ = Sx − iσSy, σ = ±, and Sx,Sy are the total dot
spin operators. Here we take into account that the operator
n̂σ does not change the many-body state and the states |i〉
and |f 〉 are different, 〈i|n̂σ |f 〉 = 0. The first line in Eq. (21)
corresponds to the contribution to the scattering cross section
due to rotation of the total spin of the quantum dot as a whole,
i.e., the total spin in the initial and final states is the same.
The other terms in Eq. (21) arise because, in the case of the
quantum dot, the total spin is composed of spins of individual
electrons occupying single-particle levels. These additional
contributions increase the inelastic scattering cross section off
the quantum dot in comparison with a magnetic impurity with
the same value of the spin.

Let us consider the case of an electron with large energy,
ε � Ef ,Ei,T . Then, the inelastic scattering cross section
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becomes

Aσ
inel =4πQ2

E2
c

∑
i

pi〈i|S(S + 1) − S2
z − σSz

+
(

2

β
− 1

) ∑
α

[n̂ασ̄ (1 − n̂ασ ) + n̂ασ (1 − 〈i|n̂ασ |i〉)]

+ 1

2

∑
γ 
=α

n̂γ (2 − n̂α)|i〉. (22)

We note that the last term in Eq. (22) is proportional to the
number K of available single-particle levels. Typically, the
increase of an electron energy on δ adds a new final state of the
quantum dot, which contributes to the sum in Eq. (22). At zero
temperature, it can be estimated as K ∼ ε/δ. Assuming that
K � N0,S, we obtain that the inelastic scattering cross section
is proportional to the electron energy, Aσ

inel = 4πQ2N0ε/E
2
c ,

for δN0,δJ/[2(δ − J )] � ε � Ec.

1. Inelastic scattering cross section in the absence
of magnetic field

Now let us consider the case of small electron energies,
ε � δ,J . We assume that the quantum dot is in the regime of
mesoscopic Stoner instability, δ,J � δ − J . Also we consider
the case of low temperatures, T � δ − J � δ,J . For sim-
plicity, we consider the case of an equidistant single-particle
spectrum. Afterwards we discuss the effect of fluctuations of
single-particle levels. The minimal energy of the many-body
state with the total spin S is equal to

ES = (δ − J )S2 − JS. (23)

Here we omit the term proportional to the charging energy Ec

since we discuss the states with the same number of electrons.
These many-body states consist of the three groups of levels:
doubly occupied levels at the bottom, singly occupied levels in
the middle, and empty levels at the top (see Fig. 1). Provided

(a) (b)

FIG. 1. Examples of low-energy eigenstates with the total spin
S = 3/2: (a) Sz = 1/2 and (b) Sz = 3/2.

the exchange interaction is bounded to the following interval:

2S − 1

2S
< J/δ <

2S + 1

2S + 2
, (24)

the quantum dot has the total spin S in the ground state.
For δ − J � δ,J , its value is large, S ≈ δ/[2(δ − J )] � 1.
Interestingly, in this regime, there are two low-lying many-
body excited states which correspond to the states with the total
spins S + 1 and S − 1. The gaps E± = ES±1 − ES between
these excited states and the ground state are much smaller then
the typical level spacing: E+ = (δ − J )(2S + 1) − J ≤ δ/S

and E− = −(δ − J )(2S − 1) + J ≤ δ/(S + 1). For the case
of large total spin, S � 1, the gaps E+ and E− are small
in comparison with the mean single-particle level splitting,
E± � δ. The next many-body excited states with the total
spins S ± 2 have the gaps which lie in the following intervals:
δ/(S + 1) ≤ E++ ≤ 3δ/S and δ/S ≤ E−− ≤ 3δ/(S + 1) (see
Fig. 2). Assuming that temperature T � δ − J , we neglect
them.

The operator d
†
γ σ ′dασ with α 
= γ has nonzero matrix

elements between the many-body states with the same or
shifted by one spin projection. Let us consider the ground state
with the total spin S and projection M . The state d

†
γ σ ′dασ |S,M〉

will have the energy equal to ES+1 if the level α is the highest
doubly occupied one, whereas the level γ is the lowest empty
one (see Fig. 3). Theoperator d

†
ασ̄ dασ has nonzero matrix

elements between the low-lying many-body states with the

E� E�

E�� E��

2 S�1
2 S

2 S�1
2 S�2

Δ
S

3 Δ
S

6 Δ
S

Δ
S�1

3 Δ
S�1

6 Δ
S�1

J�Δ

�
E

S

FIG. 2. Energies of the low-lying many-body eigenstates (23) as
a function of J/δ for the case when the total spin in the ground state
is equal to S. The ground-state energy ES is set to zero.
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α

γ

α

γ

α α

γ γ

FIG. 3. The sketch of inelastic transitions with (left column) and
without (right column) spin flip. The total spin increases (decreases)
by one during the transition in the top (bottom) row (see text).

same total spin. In this case, the level α can be any among
singly occupied levels whose number is equal to 2S. The
corresponding matrix elements can be calculated in a standard
way with the help of the Clebsch-Gordan coefficients (see, e.g.,
Ref. [33]). The necessary matrix elements are summarized
in Table I. Then, for T � δ − J and |ε|,δ − J � δ,J , we
find the following result for the inelastic scattering cross

section:

Aσ
inel(ε) =4πQ2

E2
c

{
(2S + 1)(S + 1)

3
+ 1

2
F (ε,E−)

+ 2S + 3

2(2S + 1)
F (ε,E+)

}
, (25)

where we introduce the function

F (ε,E) = 2 cosh2(βε/2)

cosh(βε) + cosh(βE)
. (26)

The first contribution in Eq. (25) represents the elastic
spin-flip scattering, and the next two correspond to the
inelastic scattering with and without spin flip. We note that the
contribution in Eq. (25) due to the elastic spin-flip scattering,
(2S + 1)(S + 1)/3, is larger than the result for the magnetic
impurity, 2S(S + 1)/3. It occurs due to additional correlations
between tunneling amplitudes in the case of an orthogonal
ensemble (β = 1).

Now let us consider the case of higher temperatures,
δ � T � δ − J . Then, many low-energy excited states with
the total spin S ± k with k �

√
T/(δ − J ) contribute to the

inelastic cross section. For δ − J � T , the summation over
discrete values of k can be substituted by an integration. Using
the result∫

dS(2S + 1)f (S)e−βES∫
dS(2S + 1)e−βES

=f (Sg) + T

δ
f ′(Sg)

+ T

4(δ − J )
f ′′(Sg), (27)

where Sg = J/[2(δ − J )] and f (S) is a quadratic polynomial
of S, we obtain the inelastic scattering cross section for δ �
T � δ − J at energies |ε| � δ as follows:

Aσ
inel(ε) = 4πQ2

E2
c

[
δ(3δ − 2J )

6(δ − J )2
+ T

3(δ − J )

]
. (28)

We emphasize that the inelastic cross section becomes larger
than one can expect for the case of magnetic impurity with the
spin of the order of δ/[2(δ − J )].

Above we assumed that the single-particle level spacing
in the quantum dot is equidistant. In general, this is not the
case. Below, following Ref. [13], we shall take into account
the fluctuation of the single-particle levels near the Stoner

TABLE I. Matrix elements between low-lying many-body states. The single-particle states α and γ are different, α 
= γ (see text and
Fig. 3).

〈S ′,m′|d†
γ σ ′dασ |Sm〉 ∑m

m=−S〈S ′,m′|d†
γ σ ′dασ |Sm〉

〈S + 1,m + 1|d†
γ↑dα↓|S,m〉 = 〈S + 1,m + 1|(|S,m〉|1,1〉) =

√
(S+m+2)(S+m+1)√

(2S+1)(2S+2)

∑S

m=−S |〈S + 1,m + 1|d†
γ↑dα↓|S,m〉|2 = 2S+3

3

〈S − 1,m + 1|d†
γ↑dα↓|S,m〉 = 〈S,m|(|S − 1,m + 1〉|1, − 1〉) =

√
(S−m)(S−m−1)√

(2S)(2S−1)

∑S

m=−S |〈S − 1,m + 1|d†
γ↑dα↓|S,m〉|2 = 2S+1

3

〈S + 1,m|d†
γ↓dα↓|S,m〉 = 1√

2
〈S + 1,m|(|S,m〉|1,0〉) =

√
(S+m+1)(S−m+1)√

(2S+1)(2S+2)

∑S

m=−S |〈S + 1,m|d†
γ↓dα↓|S,m〉|2 = 2S+3

6

〈S − 1,m|d†
γ↓dα↓|S,m〉 = 1√

2
〈S,m|(|S − 1,m〉|1,0〉) =

√
(S+m)(S−m)√
(2S)(2S−1)

∑S

m=−S |〈S − 1,m|d†
γ↓dα↓|S,m〉|2 = 2S+1

6

〈S,m + 1|d†
α↑dα↓|S,m〉 = 1

2S
〈S,m + 1|S+|S,m〉 =

√
(S−m)(S−m+1)

2S

∑S

m=−S |〈S,m + 1|d†
α↑dα↓|S,m〉|2 = (S+1)(2S+1)

6S
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instability, δ − J � δ. For a given realization of the single-
particle levels, the energy E+ acquires a random correction
�E2S : E+ → E+ + �E2S . This random energy correction is
due to fluctuations of single-particle energy in a strip with
2S levels on average. It can be estimated as �E2S = δ�n2S ,
where �n2S stands for fluctuation of the number of levels in
the energy strip with 2S levels on average. Near the Stoner
instability, we obtain from the condition E+ + �E2S = 0 that
the spin in the ground state is given as

S = δ

2(δ − J )
[1 − �n2S]. (29)

It is well known from the random matrix theory [34] that for
S � 1, the fluctuations of �n2S are Gaussian and

�n2S = 0, (�n2S)2 = 2

βπ2
(ln 2S + const). (30)

Then, with the help of Eqs. (29) and (30), for a function f (S)
which is the quadratic polynomial as in Eq. (25), we find

f (S) = f (S) + S
2

βπ2
ln(2S)f ′′(S), (31)

where S = δ/[2(δ − J )]. Using Eq. (31) and averaging
the functions F (ε,E+ + δ�n2S) and F (ε,E− − δ�n2S) in
Eq. (25) over �nS with Gaussian distribution (30), we obtain
the averaged inelastic scattering cross section for temperatures
T � δ − J and energies ε � δ:

Aσ
inel(ε) = 4πQ2

E2
c

(
2δ2

3(δ − J )2

[
1 + 2

π2
ln

δ

δ − J

]

+F
{
ε,2(δ − J ),

δ

π

√
2 ln[δ/(δ − J )]

})
. (32)

Here we neglect subleading terms in comparison with the
largest one in the first line of Eq. (32) which corresponds
to the elastic spin-flip contribution. The function F(x,y,z) is
defined as follows:

F(x,y,z) = 1 + 1

2
erf

(
x − y

z

)
− 1

2
erf

(
x + y

z

)
, (33)

where erf(z) = (2/
√

π )
∫ z

0 dt exp(−t2) denotes the error func-
tion. The result (32) is valid under the following assumptions:

(1 − J/δ)2 � (2/π2) ln[δ/(δ − J )] � 1. (34)

This restricts the value of the total spin in the ground state
to the interval 2 � S � 70. The right inequality in Eq. (34)
guarantees that fluctuations of S are small and Gaussian.
For S � (1/2) exp(π2/2), fluctuations of the total spin be-
comes non-Gaussian (see Refs. [35]). The left inequality
in Eq. (34) guarantees that the effective temperature Teff ∼
(δ/π )

√
2 ln[δ/(δ − J )] induced by fluctuations and smearing

the steps at ε = ±2(δ − J ) is larger than the temperature,
Teff � δ − J � T . We note that the effective temperature is
low in comparison with the mean level spacing, Teff � δ. All
in all, fluctuations of the single-particle levels enhance the
elastic spin-flip contribution (similarly to enhancement of spin
susceptibility [11,13,35]) and smear the steps in the inelastic
spin-flip and non-spin-flip contributions.

2. Inelastic scattering cross section in the presence
of magnetic field

Now we consider the behavior of the inelastic cross section
in the presence of magnetic field B. We assume that in addition
to the Zeeman splitting, this magnetic field produces the
orbital effect and breaks the time-reversal symmetry. Then,
the parameter β becomes equal to 2, β = 2. We consider the
case of Zeeman splitting, which is strong in comparison with
temperature but small with respect to δ, δ � b = μBgLB �
T . Then, the degeneracy of the low-lying states with the total
spin S is removed. The lowest-energy state with the total spin
S corresponds to the maximal total-spin projection along the
magnetic field Sz = S (we assume B > 0). The energies of
these states become

ES(B) = (δ − J )S2 − JS − bS. (35)

Hence, in the presence of Zeeman splitting, the total spin in the
ground state is equal to S ≈ (δ + b)/[2(δ − J )] for δ − J � δ.

The absence of degeneracy with respect to the total-spin
projection makes the elastic spin-flip contribution to the
inelastic cross section exponentially small in parameter βb �
1. The same holds true for the contribution due to inelastic
scattering without spin flip. Thus the main contribution to the
inelastic scattering cross section comes from inelastic spin-flip
scattering,

Aσ
inel(ε) = 4πQ2

E2
c

∑
α 
=γ

∑
f 
=i

′
pi

[1 + e−βε]|〈i|d†
γ,−σ dασ |f 〉|2

1 + e−β(ε+Ei−Ef ) .

(36)
Here the prime sign indicates that the summation is over the
low-energy many-body states i and f which are characterized
by the total spin S and the maximal total-spin projection along
the magnetic field, Sz = S [see Fig. 1(b)]. The gaps between
the ground state with the total spin S and the lowest many-body
excited states, E±(B) = E± ∓ b, can be bounded from above:
max E+(B) ≤ (δ + b)/S and max E−(B) ≤ (δ + b)/(S + 1).
We note that for S � 1, the energy scale (δ + b)/S ≈ 2(δ −
J ) � δ. To calculate the matrix elements in (36), one needs
to take into account that the single-particle level α should be
the highest doubly occupied level and γ should be the lowest
unoccupied level, or vice versa (see transition in the left lower
corner of Fig. 3). Using the results for the matrix elements
from Table I, we find the following result for the inelastic
cross section at |ε| � δ and T � (δ − J ) � b:

Aσ
inel(ε) = 4πQ2

E2
c

{1 − nF [ε − Eσ (B)] + nF [ε + Eσ̄ (B)]}.
(37)

As one can check, the result for Aσ
inel(ε) at B < 0 can be

obtained from the result for Aσ̄
inel(ε) for B > 0.

It is instructive to compare the results for Aσ
inel(ε) with and

without magnetic field. At first, the magnetic field suppresses
the elastic spin-flip contribution. Second, instead of four steps
of height 1/2 (in the case of large spin S � 1) at energies E±
and −E± in the absence of magnetic field [see Eq. (37)], in
the presence of the Zeeman splitting only two steps at Eσ (B)
and −Eσ̄ (B) of height 1 survive. We stress that contrary to
the case of magnetic impurity, the inelastic scattering cross
section off the quantum dot in the presence of the Zeeman
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splitting at energies |ε| � Eσ (B) is not exponentially small
in βb � 1. For energies |ε| � Eσ (B), the inelastic scattering
cross section is zero at T = 0.

In the presence of fluctuations of the single-particle levels,
the energies Eσ (B) become random, Eσ (B) → Eσ (B) +
σ�E2S . As a consequence, the spin in the ground state
becomes fluctuating,

S = 1

2(δ − J )
[δ + b − δ�n2S]. (38)

Averaging the Fermi functions in Eq. (37) over �n2S over the
Gaussian distribution (30) with β = 2, we find the inelastic
scattering cross section at |ε| � δ and T � (δ − J ) � b � δ

as

Aσ
inel(ε) = 4πQ2

E2
c

(
1 + 1

2
erf

{
π [ε − 2(δ − J )]

δ
√

ln[b/(δ − J )]

}

− 1

2
erf

{
π [ε + 2(δ − J )]

δ
√

ln[b/(δ − J )]

})
. (39)

This result is valid provided the following inequality holds:

(δ − J )2 � 1

π2
ln

b

δ − J
� 1. (40)

The left inequality in Eq. (40) implies that the effective
temperature Teff = (δ/π )

√
ln[b/(δ − J )] smearing the

steps in Aσ
inel(ε) at Eσ (B) and −Eσ̄ (B) is not very low,

Teff � δ − J � T . The right inequality in Eq. (40) guarantees
that fluctuations of the total spin remain Gaussian.

C. Inelastic scattering cross section in the presence
of strong spin-orbit coupling

In the previous section, we demonstrate that the Zeeman
splitting suppresses the elastic spin-flip scattering due to
lifting the 2S + 1 degeneracy of the ground state. In this
section, we discuss another mechanism of suppression of the
elastic spin-flip scattering on the quantum dot. We consider
a quantum dot fabricated in 2D electron gas with strong
spin-orbit coupling. Such quantum dot can be described by the
universal Hamiltonian (2) in which the Heisenberg exchange
is substituted by the Ising exchange: J S2 → JS2

z [36,37]. In
this case, the statistics of single-particle levels is described by
the unitary symmetry ensemble (class A) with β = 2.

The low-energy many-body states correspond to the total
spin S and the maximal or minimal spin projection Sz = ±S.
The energies of these states are equal to

ES = (δ − J )S2. (41)

Therefore, the total spin in the ground state is equal to 0 (1/2)
in the case of even (odd) number of electrons.

For the even number of electrons, since S = 0, the elastic
spin-flip scattering vanishes. For T � δ − J and |ε| � δ, the
only contribution to Aσ

inel(ε) remains due to the inelastic spin
flip,

Aσ,e
inel(ε) = 4πQ2

E2
c

[1 − nF (ε − �e) + nF (ε + �e)]. (42)

Here, �e = δ − J stands for the gap between the ground state
with S = Sz = 0 and the states with S = 1 and Sz = ±1.

In the case of the odd number of electrons, since S = 1/2,
the ground state is doubly degenerate. Then the elastic
spin-flip scattering is the same as for the magnetic impurity
with spin 1/2. In addition, the inelastic spin flip contributes to
the inelastic cross section. Then, at T �δ−J and |ε|�δ, we find

Aσ,o
inel(ε) = 2πQ2

E2
c

[1+1−nF (ε−�o)+nF (ε + �o)]. (43)

Here, �o = 2(δ − J ) denotes the gap between the ground
state with S = 1/2 and the states with S = 1 and Sz = ±1.

We note that the inelastic scattering rate at energies |ε| �
δ − J is independent of electron parity in the quantum dot,

Aσ,e
inel(ε) = Aσ,o

inel(ε) = 4πQ2

E2
c

. (44)

In the case of temperatures δ � T � δ − J , the low-
lying many-body states with the total spin S �

√
T/(δ − J )

contribute to the inelastic cross section for |ε| � δ. Similar to
low temperatures, the dominant contribution is due to inelastic
spin flip. Then, we obtain

Aσ
inel(ε) = 8πQ2

E2
c

⎡
⎣ ∞∑

Sz=−∞
eβ(J−δ)S2

z

⎤
⎦

−1 ∞∑
Sz=−∞

eβ(J−δ)S2
z

×F (ε,(δ − J )(2Sz + 1)) = 8πQ2

E2
c

. (45)

We note that the inelastic cross section for |ε| ∼ δ at δ � T �
δ − J is twice as large as at T � δ − J . This difference stems
from the following. At high temperatures, δ � T � δ − J ,
the following four combinations of initial and final states
contribute to the inelastic spin-flip cross section [see Eq. (21)]:
(i) |i〉 = |S,S〉 and |f 〉 = |S − 1,S − 1〉; (ii) |i〉 = |S, − S〉
and |f 〉 = |S + 1, − S − 1〉; (iii) |i〉 = |S + 1,S + 1〉 and
|f 〉 = |S,S〉; and (iv) |i〉 = |S − 1, − S + 1〉 and |f 〉 = |S, −
S〉. In the case of low temperatures, T � δ − J , when only
the state with the lowest spin (S = 0 or S = 1/2) contributes,
the transitions (i) and (iv) are not possible.

In the case of the even number of electrons, the gap �e

is determined by the difference in the level spacing between
the lowest singly occupied and the highest doubly occupied
levels and the exchange energy. As it is well known, the level
spacing strongly fluctuates and its distribution can be well ap-
proximated by the Wigner Surmise (see Ref. [34]). The typical
scale of this distribution is given by the mean level spacing.
Qualitatively, averaging of Eq. (42) over the distribution of �e

results in the same form of the dependence on energy, but with
the effective temperature proportional to the mean level spac-
ing. Similar results are obtained after averaging of Eq. (43).
The inelastic cross section at temperatures δ � T � δ − J is
robust with respect to fluctuations since it is independent of
the particular properties of the single-particle spectrum.

IV. DISCUSSIONS AND CONCLUSIONS

A. The dephasing rate

Our results for the inelastic scattering cross section of an
electron off the quantum dot at low temperatures allow us
to estimate the corresponding contribution to the dephasing
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rate. Assuming a finite concentration ns of quantum dots, we
introduce the inelastic scattering rate for an electron as follows:

τ−1
inel(ε,T ) = ns

ν

∑
σ=±

Aσ
inel(ε). (46)

We remind the reader that ν denotes the average density of
states per spin for electrons in the electron liquid surrounding
quantum dots. We note that in Refs. [5,8], the inelastic rate at
finite temperature has been related directly to the difference
between the imaginary part of the T matrix and the diagonal
element of its square. Although this is correct for the case of
zero temperature, at finite temperature it is not the case in gen-
eral [see discussion after Eq. (14)]. In our case, by definition,
the quantity Aσ

inel(ε) includes the inelastic processes only.
Using the fact that the quantity 1/τinel(ε,T ) represents the

self-energy for the electron pair propagator (Cooperon), one
can estimate the dephasing time τφ(T ) entering the expression
for the weak-localization correction to the conductivity [5].
The concrete expression depends on dimensionality. Having
in mind experiments of Refs. [10], we restrict our discussion
to two dimensions, d = 2. In this case, one can obtain [5]

τ−1
φ (T ) = exp

[∫
dε n′

F (ε) ln τinel(ε,T )

]
. (47)

We mention that the above estimate for τφ(T ) is based on
independent treatment of the inelastic scattering off quantum
impurities and elastic disorder scattering. As discussed in
Ref. [5], such simplified approach is valid for d = 2 under the
following assumptions: (i) the system is a very good metal,
i.e., the conductance g � (νJs)−3; and (ii) the density of
quantum impurities is not large, ns � νTK . For our problem,
the characteristic exchange interaction between electrons and
quantum impurities (quantum dots) can be estimated as νJs =
Q/Ec (see Sec. III A). The Kondo temperature TK is given by
the standard expression, TK ∼ Ec exp(−1/νJs).

We start the discussion of τφ(T ) from the case of the
isotropic exchange interaction on the quantum dot. Near the
Stoner instability, δ − J � δ, at temperatures T � δ − J ,
the inelastic scattering rate Aσ

inel(ε) is given by Eq. (25).
Performing expansion in small energy-dependent terms, we
find, from Eq. (47),

τ−1
φ (T ) =8πnsQ

2

νE2
c

[
(S + 1)(2S + 1)

3
+ βE−e−βE−

+ 2S + 3

2S + 1
βE+e−βE+

]
. (48)

There is a weak temperature dependence of the dephasing rate
due to the possibility of inelastic scattering which involves
transitions to the lowest many-body levels of the quantum
dot. Also we emphasize that the elastic spin-flip contribution
to the dephasing rate is different from a standard one for a
magnetic impurity which is proportional to S(S + 1)/3. We
repeat that it occurs due to additional correlations between
tunneling amplitudes for transitions to different levels of the
quantum dot. Using Eq. (28), we obtain, at higher temperatures
δ − J � T � δ,

τ−1
φ (T ) = 8πnsQ

2

νE2
c

[
δ(3δ − 2J )

6(δ − J )2
+ T

3(δ − J )

]
. (49)

We mention that in fact both estimates (48) and (49) hold for
dimension d = 3 as well. In the presence of Zeeman splitting,
the elastic spin flip is suppressed. Then, using Eq. (37),
we find the following estimate for the dephasing rate at
low temperatures T � δ − J and moderate magnetic fields
δ � b � δ − J :

τ−1
φ (T ) = 4πe2nsQ

2

νE2
c

[e−βE+(B) + e−βE−(B)]. (50)

We note that the dephasing rate in this case is exponentially
small in temperature, τ−1

φ (T ) ∼ exp[−2β(δ − J )].
In the case of Ising exchange, interaction on the quantum

dot τφ(T ) depends on the parity of the number of electrons at
low temperatures, T � δ − J . Using Eqs. (42) and (43), we
obtain

τ−1
φ,e(T ) = 8πnsQ

2

νE2
c

e−β�e (51)

for the even number of electrons, and

τ−1
φ,o(T ) = 4πnsQ

2

νE2
c

[1 + πe−β�o ] (52)

for the odd number of electrons. At higher temperatures, δ �
T � δ − J , the dephasing time becomes insensitive to the
parity of the number of electrons,

τ−1
φ (T ) = 16πnsQ

2

νE2
c

. (53)

Thus, the dephasing time for the temperature range, δ �
T � δ − J , due to scattering off the quantum dot with Ising
exchange is similar to the magnetic impurity.

B. The effect of the reservoir

We note that our approach completely ignores the effect
of the electron reservoir on the quantum dot. First of all,
the coupling to the reservoir results in the broadening (�)
of the single-particle levels which is of the order of gT δ.
It can be neglected provided temperatures are not too low,
T � gT δ. Second, due to coupling to the reservoir, the
probabilities pi of many-body states of the quantum dot can
become nonequilibrium, i.e., very different from the Gibbs
form. However, in the case of a slow escape rate (which is
of the order of � ∼ gT δ) in comparison with the intrinsic
inelastic rate 1/τee due to electron-electron interaction inside
the quantum dot, this nonequilibrium effect can be neglected.
For the quantum dot of size larger than the mean free path
l, the intrinsic inelastic rate can be estimated as [38,39]
1/τee ∼ T 2/(g2

Thδ). The condition � � 1/τee results in the
following restriction on temperatures at which our assumption
of the equilibrium for the quantum dot holds:

T � δ
(
gT g2

Th

)1/2
. (54)

Since in this work we study temperatures below δ − J , the
following condition for the tunneling conductances (or for
proximity to the Stoner instability) emerges:

gT � 1

g2
Th

(
δ − J

δ

)2

. (55)
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Also our approach neglects the effect of the reservoir on the
dynamics of the total spin in the quantum dot. In particular, we
neglect the renormalization of the value of the total spin due
to coupling to the reservoir. Using adiabatic approximation
for the large total spin of the quantum dot near the Stoner
instability [40], one can demonstrate that the spin moves
diffusively on the Bloch sphere with the diffusive constant
proportional to the tunneling coupling Q [20,21].

C. Relation to the experiments

Recent experiments [10] give an evidence which may
be interpreted as the formation of local spin droplets in
2D disordered electron liquid at low temperatures. In these
experiments, the following observations have been made: the
spin susceptibility behaves as χ ∼ T −2 and the dephasing rate
remains linear in temperature in the very same temperature
range. As known [41], at low temperatures, 2D disordered
electron liquid tends to the Stoner instability such that the
renormalized Fermi-liquid interaction constant in the triplet
channel tends to −1, Fσ

0 ≈ −1. The creation of spin droplets
with a finite spin Sg = 1/[2(1 + Fσ

0 )] � 1 near the Stoner
instability in disordered electron liquid due to fluctuations in
the triplet (spin) channel has been predicted in Ref. [12]. The
Pauli spin susceptibility χ ∼ ν/(1 + Fσ

0 ) dominates at high
temperatures. Due to the presence of spin droplets, one expects
that the spin susceptibility is dominated by the Curie-like
temperature dependence, χ ∼ nfl

s S
2
g/T , at low temperatures,

T � T fl
∗ = nfl

s Sg/ν. Here, nfl
s denotes the density of spin

droplets. This could suggest strong temperature dependence
of the droplet density, nfl

s ∼ 1/T . Since the origin of this
dependence remains unclear, in what follows we assume that
nfl

s is temperature independent as predicted by the theory of
Ref. [12]. The electron scattering off such spin droplets results
in the following contribution to the dephasing rate: nfl

s S
2
g/(νg),

where g is the conductance of 2D disordered electron liquid
[12]. Comparing this contribution with the standard dephasing
rate due to electron-electron interaction in the triplet channel,
T/[g(1 + Fσ

0 )] [42], one finds that the dephasing rate should
saturate below the same crossover temperature T fl

∗ . Thus, in
the presence of such spin droplets, the Curie-like temperature
dependence of the spin susceptibility should be accompanied
by the temperature-independent dephasing time. Thus, spin
droplets alone seems to be insufficient to explain the experi-
ments [10] even qualitatively.

Let us now assume that there are some electron puddles
in 2D electron liquid. Then, in such puddle, some number
of electrons can be localized. Let us model such a droplet
of size Ld � l � λF by a quantum dot with the Heisenberg
exchange interaction J = −Fσ

0 δ. Here, λF denotes the Fermi
wavelength. Then, at temperatures T � T� = nsSg/ν, where,
we remind the reader, Sg ≈ J/[2(δ − J )] = 1/[2(1 + Fσ

0 )] �
1 is the total spin of the droplet, one expects that the spin
susceptibility is dominated by the Curie-like temperature
dependence, χ ∼ nsS

2
g/T . Using Eq. (49) as an estimate

for the contribution to the dephasing rate due to scattering
off spin droplets, we find that it dominates over the linear-
in-T contribution at temperatures T � Ts ∼ η2T�, where
the parameter η = (Q/Ec)

√
g ∼ gchl/(rsLd

√
g). Provided

the interaction parameter rs ∼ λF /aB ∼ 1, g � 1, and the

tunneling conductance per channel is small, gch � 1, we find
η � 1. Here, aB stands for the Bohr radius. Thus, in the
temperature range Ts � T � T�, we expect the Curie-like
temperature dependence of the spin susceptibility, but the
conventional, linear-in-T dephasing rate. Certainly, in addition
to the electron puddles, there exist spin droplets emerging
due to fluctuations in the triplet channel. The contribution
to the dephasing rate due to electron scattering off electron
puddles with a finite spin will dominate the contribution from
scattering off spin droplets emerging due to fluctuations in the
triplet channel if the following condition holds: nfl

s � η2ns or,
equivalently, T fl

∗ � Ts .
In the above estimates, we used the results for the dephasing

rate obtained for temperatures below mean single-particle level
spacing δ on the quantum dot. Since the density of the spin
droplets ns cannot be larger then 1/L2

d , the condition Ts � δ

is fulfilled if the following inequality holds: η � 1/
√

Sg .
Below the saturation temperature Ts , the dephasing rate
should become temperature independent, whereas the spin
susceptibility remains Curie-like.

We emphasize that the main outcome of the discussion
above is that observations in experiments [10] can be under-
stood if one assumes two characteristic temperatures Ts and
T� for the dephasing rate and spin susceptibility, respectively.
This assumption is inconsistent with the model of spin droplets
emerging due to fluctuations in the triplet channel. To validate
our proposition of two characteristic temperatures, more
detailed data on the structure and properties of spin droplets
are needed from experiment.

D. Summary

To summarize, we studied the electron scattering off a
quantum dot with large charging and exchange energies. We
consider the scattering due to tunneling between electron
liquid and the quantum dot. Under the following assumptions:
(i) the quantum dot is in the regime of a strong Coulomb
blockade with integer number of electrons (Coulomb valley),
and (ii) the quantum dot is near the Stoner instability, we
compute the inelastic cross section in the fourth order in the
tunneling amplitudes. We have analyzed in detail the behavior
of the inelastic cross section at low temperatures and energies,
T ,|ε| � δ, for three cases: the quantum dot with Heisenberg
exchange without and with Zeeman splitting, and the quantum
dot with Ising exchange. Using our results for the inelastic
cross section, we estimate the corresponding contributions to
the electron dephasing rate. We use our results to estimate the
temperature below which the dephasing time due to scattering
off spin droplets in 2D disordered electron liquid should
saturate. In agreement with the experiments, we found that
it is well below the temperature scale below which the spin
susceptibility is expected to demonstrate Curie-like behavior.
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APPENDIX: EVALUATION OF THE GREEN’S FUNCTION FOR ELECTRONS ON
THE QUANTUM DOT TO THE SECOND ORDER IN TUNNELING

In this appendix, we present some details of derivation of the results (15). First of all, it is convenient to rewrite the definition
of the Green’s function in the imaginary time τ > 0 [see Eq. (9)] in the interaction representation as

Gασ ;βσ ′ (τ ) = − 1

Z Tr[e−τH0U (τ )d†
βσ ′e

−(β−τ )H0U (β − τ )dασ ], (A1)

where H0 = HQD + HR and

U (τ ) = Tτ exp

(
−

∫ τ

0
dτ ′eτ ′H0HT e−τ ′H0

)
. (A2)

Next we expand U (τ ) to the second order in the tunneling Hamiltonian,

U (τ ) �1 −
∫ τ

0
dτ ′eτ ′H0HT e−τ ′H0 +

∫ τ

0
dτ ′eτ ′H0HT e−τ ′H0

∫ τ ′

0
dτ ′′eτ ′′H0HT e−τ ′′H0 , (A3)

substitute this result into the expression (A1) for the Green’s function, and take the trace over the reservoir degrees of freedom
with the help of identity

Tr[Tτ akσ (τ )a†
k′σ ′(0)e−βHR ]

Tr e−βHR
= δk,k′δσ,σ ′e−τεkσ [θ (τ ) − nF (εkσ )], (A4)

where θ (τ ) stands for the Heaviside step function. Then, we find

Gασ ;βσ (τ )= 1

Z

∑
γ,η;σ ′

∫ ∞

−∞
dEQσ ′

γ η(E)

{∫ β−τ

0
dτ1

∫ τ

0
dτ2

[
nF (E)e(τ+τ2−τ1)E Tr

(
d
†
γ σ ′e

−τ1HQDd
†
βσ e−(β−τ−τ2)HQDdησ ′e−τ2HQDdασ e−(τ−τ1)HQD

)

+ [1 − nF (E)]e−(τ+τ2−τ1)E Tr
(
dησ ′e−τ1HQDd

†
βσ e−(β−τ−τ2)HQDd

†
γ σ ′e

−τ2HQDdασ e−(τ−τ1)HQD
)]

−
∫ τ

0
dτ1

∫ τ

0
dτ2

[
nF (E)e(τ1−τ2)E Tr

(
d
†
γ σ ′e

−τ2HQDd
†
βσ e−(β−τ )HQDdασ e−(τ−τ1)HQDdησ ′e−(τ1−τ2)HQD

)

+ [1 − nF (E)]e−(τ1−τ2)E Tr
(
dησ ′e−τ2HQDd

†
βσ e−(β−τ )HQDdασ e−(τ−τ1)HQDd

†
γ σ ′e

−(τ1−τ2)HQD
)]

−
∫ β−τ

0
dτ1

∫ τ

0
dτ2

[
nF (E)e(τ1−τ2)E Tr

(
d
†
γ σ ′e

−τ2HQDdασ e−τHQDd
†
βσ e−(β−τ−τ1)HQDdησ ′e−(τ1−τ2)HQD

)

+ [1 − nF (E)]e−(τ1−τ2)E Tr
(
dησ ′e−τ2HQDdασ e−τHQDd

†
βσ e−(β−τ−τ1)HQDd

†
γ σ ′e

−(τ1−τ2)HQD
)]}

. (A5)

Now we perform integration over imaginary times τ1 and τ2, neglect all terms which are exponentially small in βEc, and make
analytic continuation to real frequency. Then, we find

Aσ
tot(ε) = π

∑
αβγ η

∑
i,f,σ ′

∫
dε′Qσ

βα(ε)Qσ ′
γ η(ε′)pi

1 + e−βε

1 + e−βε′

[
〈i|d†

γ σ ′
1

ε − Ef + HQD
dασ + dασ

1

ε + Ei − HQD
d
†
γ σ ′ |f 〉

× 〈f |d†
βσ

1

ε − Ef + HQD
dησ ′ + dησ ′

1

ε + Ei − HQD
d
†
βσ |i〉δ(ε′ + Ef − ε − Ei) + eβεδ(ε′ + Ef − ε − Ei)

×〈i|d†
βσ

1

ε − Ei + HQD
d
†
γ σ ′ + d

†
γ σ ′

1

ε + Ef − HQD
d
†
βσ |f 〉〈f |dησ ′

1

ε − Ei + HQD
dασ + dασ

1

ε + Ef − HQD
dησ ′ |i〉

]
.

(A6)

We note that this expression can be derived in a different approach (see [23]). This gives a transparent interpretation of the i and
f states as initial and final states of a quantum dot. The inelastic scattering will correspond to different initial and final states.
With this in mind, we mention that the second contribution in Eq. (A6) contains the initial and final states which differ by the
number of electrons. Such contribution does not correspond to the scattering process and we omit it. Finally, we obtain Eq. (15).
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